Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Jun 01 2023 01:58:34
%S 9,9,1,7,1,9,8,5,5,8,3,8,4,4,4,3,1,0,4,2,8,1,8,5,9,3,1,4,9,7,5,5,0,6,
%T 9,1,6,4,9,9,4,6,5,4,4,8,3,0,5,3,3,0,5,9,7,3,1,4,8,3,4,3,7,0,3,8,0,1,
%U 9,8,3,9,2,2,7,3,9,5,8,0,0,3,0,7,8,8,7,4
%N Decimal expansion of 1/zeta(7).
%C Decimal expansion of 1/zeta(7), the inverse of A013665.
%C 1/zeta(7) has no known closed-form formula like 1/zeta(2) = 6/Pi^2, 1/zeta(4) = 90/Pi^4 or 1/zeta(6) = 945/Pi^6.
%C 1/zeta(7) is the probability that 7 randomly selected numbers will be coprime. - _A.H.M. Smeets_, Apr 13 2021
%H Karl-Heinz Hofmann, <a href="/A343367/b343367.txt">Table of n, a(n) for n = 0..10000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann zeta function</a>.
%F Equals 1/A013665.
%F Equals Sum_{k>=1} mobius(k) / k^7. - _Sean A. Irvine_, Aug 20 2021
%F Equals Product_{p prime} (1 - 1/p^7). - _Amiram Eldar_, Jun 01 2023
%e 0.9917198558384443104281859314975506916499...
%t RealDigits[1/Zeta[7], 10, 100][[1]] (* _Amiram Eldar_, Apr 13 2021 *)
%o (PARI) 1/zeta(7) \\ _A.H.M. Smeets_, Apr 13 2021
%Y Cf. A008683, A013665.
%K nonn,cons
%O 0,1
%A _Karl-Heinz Hofmann_, Apr 12 2021