login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^k)^(3^(k-1)).
7

%I #10 Apr 13 2021 04:43:24

%S 1,1,3,12,39,138,469,1603,5427,18372,61869,207909,696537,2328039,

%T 7762266,25826142,85749969,284171598,940027872,3104280885,10234808334,

%U 33692547249,110753171784,363561071175,1191860487561,3902350627434,12761565487173,41685086306917,136012008938158

%N Expansion of Product_{k>=1} (1 + x^k)^(3^(k-1)).

%F a(n) ~ exp(2*sqrt(n/3) - 1/6 - c/3) * 3^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (3^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 13 2021

%p h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(h(n-i*j, i-1)*binomial(3^(i-1), j), j=0..n/i)))

%p end:

%p a:= n-> h(n$2):

%p seq(a(n), n=0..28); # _Alois P. Heinz_, Apr 12 2021

%t nmax = 28; CoefficientList[Series[Product[(1 + x^k)^(3^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 3^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 28}]

%o (PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(3^(k-1))))} \\ _Andrew Howroyd_, Apr 12 2021

%Y Cf. A098407, A104460, A256142, A343361, A343362, A343363, A343364, A343365, A343366.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Apr 12 2021