Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Apr 12 2021 12:13:39
%S 1,1,7,43,280,1792,11586,74550,479892,3083640,19794678,126908502,
%T 812761299,5199586119,33230586285,212172173565,1353444677529,
%U 8626044781761,54931168743703,349524243121795,2222294161109422,14119034725444774,89639674321304392,568720801952770012
%N Expansion of Product_{k>=1} 1 / (1 - x^k)^(6^(k-1)).
%F a(n) ~ exp(sqrt(2*n/3) - 1/12 + c/6) * 6^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} 1/(j * (6^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 12 2021
%p a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
%p d*6^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
%p end:
%p seq(a(n), n=0..23); # _Alois P. Heinz_, Apr 12 2021
%t nmax = 23; CoefficientList[Series[Product[1/(1 - x^k)^(6^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
%t a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 6^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
%Y Cf. A034691, A104460, A144070, A343349, A343350, A343352, A343353, A343354, A343355.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Apr 12 2021