Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 10 2021 10:47:58
%S 9,10,12,17,18,19,20,21,22,24,25,26,28,35,37,38,41,42,44,49,50,52,56,
%T 65,66,68,72,79,80,87,91,93,94,96,103,107,109,110,115,117,118,121,122,
%U 124,131,133,134,137,138,140,143,145,146,148,151,152,155,157,158
%N Numbers whose binary representation has a prime number of zeros and a prime number of ones.
%C Terms of 4, 5 and 6 total bits (9 through 56) are the same as A089648.
%H Alois P. Heinz, <a href="/A343258/b343258.txt">Table of n, a(n) for n = 1..10000</a> (first 78 terms from Jean-Jacques Vaudroz)
%p q:= n->(l->(t->andmap(isprime, [t, nops(l)-t]))(add(i, i=l)))(Bits[Split](n)):
%p select(q, [$1..200])[]; # _Alois P. Heinz_, Apr 11 2021
%t Select[Range[160], And @@ PrimeQ[DigitCount[#, 2]] &] (* _Amiram Eldar_, Apr 09 2021 *)
%o (PARI)
%o isa(n)= isprime(hammingweight(n));
%o isb(n)= isprime(#binary(n) - hammingweight(n));
%o isok(n) = isa(n) && isb(n);
%o (Python)
%o from sympy import isprime
%o def ok(n): b = bin(n)[2:]; return all(isprime(b.count(d)) for d in "01")
%o print(list(filter(ok, range(159)))) # _Michael S. Branicky_, Sep 10 2021
%Y Intersection of A052294 and A144754.
%Y Cf. A089648.
%K nonn,base
%O 1,1
%A _Jean-Jacques Vaudroz_, Apr 09 2021