login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions of n into 3 parts where at least one part divides another.
3

%I #4 Apr 09 2021 09:39:56

%S 0,0,1,1,2,3,4,5,7,7,10,10,14,14,17,17,22,20,27,24,29,30,37,31,41,40,

%T 45,42,53,43,59,54,61,60,66,56,78,73,78,70,90,74,98,86,92,96,110,87,

%U 113,103,116,109,132,110,129,118,135,136,153,115,162,150,151,147,165,145

%N Number of partitions of n into 3 parts where at least one part divides another.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} sign(c(i/j) + c((n-i-j)/j) + c((n-i-j)/i)), where c(n) = 1 - ceiling(n) + floor(n).

%Y Cf. A343126.

%K nonn

%O 1,5

%A _Wesley Ivan Hurt_, Apr 08 2021