Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Nov 04 2022 12:42:01
%S 1,1,1,1,3,1,1,7,5,1,1,15,19,7,1,1,31,65,37,9,1,1,63,211,175,61,11,1,
%T 1,127,665,781,369,91,13,1,1,255,2059,3367,2101,671,127,15,1,1,511,
%U 6305,14197,11529,4651,1105,169,17,1
%N Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
%C This is the row reversed version of the triangle A047969(n, m). The corresponding array A047969 is a(n, k) = A(k, n) (transposed of array A).
%C A(n-1, k-1) = k^n - (k-1)^n gives the number of n-digit numbers with digits from K = {1, 2, 3, ..., k} such that any digit from K, say k, appears at least once. Motivated by a comment in A005061 by _Enrique Navarrete_, the instance k=4 for n >= 1 (the column 3 in array A), and the d = 3 (sub)-diagonal sequence of T for m >= 0.
%F Array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0.
%F A(n-1, k-1) = Sum_{j=1} binomial(n, j)*(k-1)^(n-j) = Sum_{j=0} binomial(n, j)*(k-1)^(n-j) - (k-1)^n = (1+(k-1))^n - (k-1)^n = k^n - (k-1)^n (from the combinatorial comment on A(n-1, k-1) above).
%F O.g.f. row n of array A: RA(n, x) = P(n, x)/(1 - x)^n, with P(n, x) = Sum_{m=0..n} A008292(n+1, m+1)*x^m, (the Eulerian number triangle A008292 has offset 1) for n >= 0. (See the Oct 26 2008 comment in A047969 by _Peter Bala_). RA(n, x) = polylog(-(n+1), x)*(1-x)/x. (For P(n, x) see the formula by _Vladeta Jovovic_, Sep 02 2002.)
%F E.g.f. of e.g.f.s of the rows of array A: EE(x, y) = exp(x)*(1 + y*(exp(x) - 1))*exp(y*exp(x)), that is A(n, k) = [y^k/k!][x^n/n!] EE(x, y).
%F Triangle T(n, m) = A(n-m, m) = (m+1)^(n-m+1) - m^(n-m+1), n >= 0, m = 0, 1, ..., n.
%F E.g.f.: -(exp(x)-1)/(x*exp(x)*y-x). - _Vladimir Kruchinin_, Nov 02 2022
%e The array A begins:
%e n\k 0 1 2 3 4 5 6 7 8 9 ...
%e -------------------------------------------------------------
%e 0: 1 1 1 1 1 1 1 1 1 1 ...
%e 1: 1 3 5 7 9 11 13 15 17 19 ...
%e 2: 1 7 19 37 61 91 127 169 217 271 ...
%e 3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
%e 4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
%e 5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
%e ...
%e The triangle T begins:
%e n\m 0 1 2 3 4 5 6 7 8 9 10 ...
%e -------------------------------------------------------------
%e 0: 1
%e 1: 1 1
%e 2: 1 3 1
%e 3: 1 7 5 1
%e 4: 1 15 19 7 1
%e 5: 1 31 65 37 9 1
%e 6: 1 63 211 175 61 11 1
%e 7: 1 127 665 781 369 91 13 1
%e 8: 1 255 2059 3367 2101 671 127 15 1
%e 9: 1 511 6305 14197 11529 4651 1105 169 17 1
%e 10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
%e ...
%e Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
%e The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
%e j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
%e j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
%e j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
%e Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
%p egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
%p cx := n -> series(n!*coeff(ser, x, n), y, 12):
%p Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
%p for n from 0 to 5 do Arow(n) od; # _Peter Luschny_, May 10 2021
%t A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Amiram Eldar_, May 10 2021 *)
%Y Cf. A005061, A008292, A047969 (reversed), A045531 (central diagonal), A047970 (row sums of triangle).
%Y Row sequences of array A (nexus numbers): A000012, A005408, A003215, A005917(k+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
%Y Column sequences of array A: A000012, A000225(n+1), A001047(n+1), A005061(n+1), A005060(n+1), A005062(n+1), A016169(n+1), A016177(n+1), A016185(n+1), A016189(n+1), A016195(n+1), A016197(n+1).
%K nonn,tabl,easy
%O 0,5
%A _Wolfdieter Lang_, May 10 2021