OFFSET
0,9
COMMENTS
The ones in the binary representation of a(n) correspond to the nonleading digits "0" in the balanced ternary representation of n.
We can extend this sequence to negative indices: a(-n) = a(n) for any n >= 0.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..6561
Wikipedia, Balanced ternary
EXAMPLE
The first terms, alongside the balanced ternary representation of n (with "T" instead of digits "-1") and the binary representation of a(n), are:
n a(n) ter(n) bin(a(n))
-- ---- ------ ---------
0 0 0 0
1 0 1 0
2 0 1T 0
3 1 10 1
4 0 11 0
5 0 1TT 0
6 1 1T0 1
7 0 1T1 0
8 2 10T 10
9 3 100 11
10 2 101 10
11 0 11T 0
12 1 110 1
13 0 111 0
14 0 1TTT 0
15 1 1TT0 1
PROG
(PARI) a(n) = { my (v=0, b=1, t); while (n, t=centerlift(Mod(n, 3)); if (t==0, v+=b); n=(n-t)\3; b*=2); v }
CROSSREFS
KEYWORD
AUTHOR
Rémy Sigrist, Apr 08 2021
STATUS
approved