|
|
A343192
|
|
Happy Honaker primes.
|
|
1
|
|
|
263, 1039, 1933, 2221, 3067, 3137, 5741, 6343, 6353, 6971, 7481, 8821, 9103, 10247, 11251, 12347, 13037, 13339, 13457, 13933, 14437, 16451, 17317, 18041, 21617, 26309, 26339, 30091, 30293, 31177, 32009, 34471, 35227, 36307, 36433, 37117, 41131, 41333, 41801, 43781
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Intersection of A033548 and A035497 or A007770.
|
|
LINKS
|
K. D. Bajpai, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
263 is a Honaker prime: the number of primes up to 263 is 56 and 2 + 6 + 3 = 11 = 5 + 6. 263 is also a Happy number: iterating the sum of squares of digits terminates in 1, i.e., 263 -> 4 + 36 + 9 = 49 -> 16 + 81 = 97 -> 81 + 49 = 130 -> 1 + 9 + 0 = 10 -> 1 + 0 = 1. Thus 263 is a Happy Honaker prime.
|
|
MATHEMATICA
|
Select[Prime[Range[20000]], FixedPoint[Total[IntegerDigits[#]^2] &, #, 10] == 1 && Plus @@ IntegerDigits@# == Plus @@ IntegerDigits@PrimePi@# &]
|
|
CROSSREFS
|
Cf. A007770, A033548, A035497, A046519.
Sequence in context: A142379 A128654 A236245 * A023314 A054802 A239685
Adjacent sequences: A343189 A343190 A343191 * A343193 A343194 A343195
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
K. D. Bajpai, Apr 07 2021
|
|
STATUS
|
approved
|
|
|
|