login
A343187
Decimal expansion of Sum_{k>=1} 1/af(k), where af is the alternating factorial.
1
2, 2, 6, 4, 4, 0, 5, 5, 1, 7, 9, 3, 2, 5, 3, 1, 7, 0, 6, 2, 9, 3, 4, 5, 7, 9, 7, 0, 3, 3, 6, 2, 9, 5, 3, 8, 4, 3, 7, 7, 0, 7, 9, 1, 2, 7, 4, 3, 7, 4, 4, 8, 9, 0, 3, 0, 4, 9, 6, 6, 7, 1, 0, 6, 1, 9, 8, 7, 0, 9, 1, 4, 2, 5, 9, 8, 7, 8, 7, 6, 8, 1, 2, 7, 2, 4, 7, 9, 3, 0, 4, 0, 7, 7, 0, 9, 0, 2, 8, 9, 8, 2, 7, 9, 9
OFFSET
1,1
EXAMPLE
2.2644055179325317... = 1/1 + 1/1 + 1/5 + 1/19 + 1/101 +....
MAPLE
evalf(sum(1/sum((-1)^(k - i)*i!, i = 1 .. k), k = 1 .. infinity));
PROG
(PARI) f(n) = sum(k=0, n-1, (-1)^k*(n-k)!); \\ A005165
suminf(n=1, 1/f(n)) \\ Michel Marcus, Apr 07 2021
CROSSREFS
Cf. A005165 (alternating factorial).
Sequence in context: A193819 A356790 A182786 * A009279 A059943 A264695
KEYWORD
cons,nonn
AUTHOR
Andrzej Kukla, Apr 07 2021
STATUS
approved