Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Apr 18 2021 17:51:20
%S 5104,1225,766,221,222,223,224,197,163,164,165,166,139,140,141,142,
%T 143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,
%U 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177
%N a(n) is the smallest number that is the sum of n positive cubes in three or more ways.
%C This is r(n,3,3) in Alter's notation.
%H R. Alter, <a href="https://doi.org/10.1007/BFb0096461">Computations and generalizations on a remark of Ramanujan</a>, pp. 182-196 of "Analytic Number Theory (Philadelphia, 1980)", ed. M. I. Knopp, Lect. Notes Math., Vol. 899, 1981. See Table 7, page 192.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = n + 124 for n >= 15.
%e a(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
%e a(4) = 1225 = 1^3 + 2^3 + 6^3 + 10^3 = 3^3 + 7^3 + 7^3 + 8^3 = 4^3 + 6^3 + 6^3 + 9^3.
%e a(9) = 224 = 6^3 + 8*1^3 = 3*4^3 + 3^3 + 5*1^3 = 5^3 + 4^3 + 4*2^3 + 3*1^3.
%Y Cf. A342902, A343080, A343082, A343083, A343085.
%K nonn,easy
%O 3,1
%A _Sean A. Irvine_, Apr 04 2021
%E Corrected by _Robert Israel_, Apr 05 2021
%E a(9) reverted by _Sean A. Irvine_, Apr 18 2021