login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343064
Side a of primitive integer-sided triangles (a, b, c) whose angle B = 2*C.
6
5, 7, 9, 11, 13, 15, 16, 17, 19, 21, 23, 24, 25, 27, 29, 31, 32, 33, 33, 35, 37, 39, 39, 40, 41, 43, 45, 47, 48, 49, 51, 51, 53, 55, 56, 56, 57, 57, 59, 61, 63, 64, 65, 67, 69, 69, 71, 72, 72, 73, 75, 75, 77, 79, 80, 81, 83, 85, 85, 87, 87, 88, 88, 89, 91, 93, 93, 95, 95, 96, 97, 99
OFFSET
1,1
COMMENTS
The triples (a, b, c) are displayed in increasing order of side a, and if sides a coincide then in increasing order of the side b.
In this case, the corresponding metric relation between sides is a*c + c^2 = c * (a + c) = b^2.
Equivalently, length of side common to the two angles, one being the double of the other, of a primitive integer-sided triangle.
For the corresponding primitive triples and miscellaneous properties and references, see A343063.
FORMULA
a(n) = A343063(n, 1).
EXAMPLE
According to inequalities between a, b, c, there exist 3 types of such triangles:
c < a < b for the smallest side a = 5 and triple (5, 6, 4).
The first side a for which there exist two distinct triangles with B = 2C is for a = 33 with the two other types of examples,
c < b < a with triple (33, 28, 16),
a < c < b with triple (33, 272, 256).
MAPLE
for a from 2 to 100 do
for c from 3 to floor(a^2/2) do
d := c*(a+c);
if issqr(d) and igcd(a, sqrt(d), c)=1 and abs(a-c)<sqrt(d) and sqrt(d)<a+c then print(a); end if;
end do;
end do;
CROSSREFS
Cf. A353619 (similar, but with B = 3*C).
Cf. A343063 (triples), this sequence (side a), A343065 (side b), A343066 (side c), A343067 (perimeter).
Cf. A106505 (sides a without repetition), A106506 (sides a sorted on perimeter).
Sequence in context: A177088 A362486 A168146 * A106505 A097985 A362570
KEYWORD
nonn
AUTHOR
Bernard Schott, Apr 10 2021
STATUS
approved