login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343010
Integers k for which there exist three consecutive Fibonacci numbers a, b, and c such that a*b*c = k*(a+b+c).
0
0, 1, 3, 20, 52, 357, 935, 6408, 16776, 114985, 301035, 2063324, 5401852, 37024845, 96932303, 664383888, 1739379600, 11921885137, 31211900499, 213929548580, 560074829380, 3838809989301, 10050135028343, 68884650258840, 180342355680792, 1236084894669817
OFFSET
1,3
COMMENTS
F(n-1)*F(n)*F(n+1) = k(n)*(F(n-1)+F(n)+F(n+1)). This implies that k(n)=(F(n-1)*F(n))/2. Now k(n) will be an integer only when n is of the form 3*m or 3*m+1. Therefore we get k = (F(3*m+-1)*F(3*m))/2.
FORMULA
Union of the two sequences b(k) and c(k) defined respectively as F(3*k-1)*F(3*k)/2 and F(3*k+1)*F(3*k)/2.
G.f.: x^2*(1 + 3*x + 3*x^2 + x^3)/(1 - 17*x^2 - 17*x^4 + x^6). - Stefano Spezia, Apr 03 2021
EXAMPLE
0 is a term because F(0)*F(1)*F(2)/(F(0)+F(1)+F(2)) is 0*1*1/(0+1+1) = 0.
1 is a term because F(2)*F(3)*F(4)/(F(2)+F(3)+F(4)) is 1*2*3/(1+2+3) = 1.
3 is a term because F(3)*F(4)*F(5)/(F(3)+F(4)+F(5)) is 2*3*5/(2+3+5) = 3.
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> (k-> mul(F(k+j), j=0..2)/add(F(k+j), j=0..2))(floor(3*n/2)-1):
seq(a(n), n=1..30); # Alois P. Heinz, Apr 02 2021
MATHEMATICA
Select[Table[(Fibonacci[k-1]*Fibonacci[k]*Fibonacci[k+1])/(Fibonacci[k-1]+Fibonacci[k]+Fibonacci[k+1]), {k, 37}], IntegerQ] (* or *)
b[k_]:=Fibonacci[3k-1]*Fibonacci[3k]/2; c[k_]:=Fibonacci[3k+1]*Fibonacci[3k]/2; Union[Table[b[k], {k, 0, 12}], Table[c[k], {k, 0, 12}]] (* Stefano Spezia, Apr 03 2021 *)
PROG
(PARI)
r(m)={fibonacci(m)*fibonacci(m-1)*fibonacci(m+1)/(fibonacci(m)+fibonacci(m-1)+fibonacci(m+1))}
{ for(m=2, 30, my(t=r(m)); if(!frac(t), print1(t, ", ")))} \\ Andrew Howroyd, Apr 02 2021
CROSSREFS
Cf. A000045 (Fibonacci numbers), 1/2 times the even terms of sequence A001654.
Cf. A065563 (F(n-1)*F(n)*F(n+1)), A078642 (F(n-1)+F(n)+F(n+1)).
Sequence in context: A267055 A296252 A211068 * A360417 A281268 A143582
KEYWORD
nonn,easy
AUTHOR
Amrit Awasthi, Apr 02 2021
STATUS
approved