%I #23 May 05 2021 13:58:52
%S 1,0,5,27,0,4665,131106,0,204995269,11254190082
%N Maximum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.
%C A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
%C Cyclic diagonal Latin squares do not exist for even n.
%C All cyclic diagonal Latin squares are diagonal Latin squares, so a((n-1)/2) <= A287648(n).
%C All diagonal transversals are transversals, so a(n) <= A006717(n).
%C A342998 <= a(n).
%H Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1412">Enumerating the diagonal transversals for cyclic diagonal Latin squares of orders 1-19</a> (in Russian).
%H Eduard I. Vatutin, <a href="/A342997/a342997.txt">Proving list (best known examples)</a>.
%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e For n=2 one of the best cyclic diagonal Latin squares of order 5
%e 0 1 2 3 4
%e 2 3 4 0 1
%e 4 0 1 2 3
%e 1 2 3 4 0
%e 3 4 0 1 2
%e has a(2)=5 diagonal transversals:
%e 0 . . . . . 1 . . . . . 2 . . . . . 3 . . . . . 4
%e . . 4 . . . . . 0 . . . . . 1 2 . . . . . 3 . . .
%e . . . . 3 4 . . . . . 0 . . . . . 1 . . . . . 2 .
%e . 2 . . . . . 3 . . . . . 4 . . . . . 0 1 . . . .
%e . . . 1 . . . . . 2 3 . . . . . 4 . . . . . 0 . .
%Y Cf. A006717, A123565, A287648, A338562, A341585, A342998.
%K nonn,more,hard
%O 0,3
%A _Eduard I. Vatutin_, Apr 02 2021