login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
10

%I #19 Apr 15 2021 07:40:40

%S 1,0,1,0,1,2,0,1,7,5,0,1,16,37,14,0,1,30,150,176,42,0,1,50,449,1104,

%T 794,132,0,1,77,1113,4795,7077,3473,429,0,1,112,2422,16456,41850,

%U 41504,14893,1430,0,1,156,4788,47832,189183,319320,228810,63004,4862

%N Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

%C The number of vertices is n + 2 - k.

%C For k >= 2, column k is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

%C By duality, also the number of loopless rooted planar maps with n edges and k vertices.

%H Andrew Howroyd, <a href="/A342981/b342981.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)

%H T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIb.

%F G.f. A(x,y) satisfies A(x) = G(x*A(x,y)^2, y) where G(x,y) = 1 + x*y + x*B(x,y) and B(x,y) is the g.f. of A082680.

%F A027836(n+1) = Sum_{k=1..n+1} k*T(n,k).

%F A002293(n) = Sum_{k=1..n+1} k*T(n,n+2-k).

%e Triangle begins:

%e 1;

%e 0, 1;

%e 0, 1, 2;

%e 0, 1, 7, 5;

%e 0, 1, 16, 37, 14;

%e 0, 1, 30, 150, 176, 42;

%e 0, 1, 50, 449, 1104, 794, 132;

%e 0, 1, 77, 1113, 4795, 7077, 3473, 429;

%e 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;

%e ...

%t G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;

%t H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];

%t CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* _Jean-François Alcover_, Apr 15 2021, after _Andrew Howroyd_ *)

%o (PARI) \\ here G(n, y) gives A082680 as g.f.

%o G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}

%o H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}

%o { my(T=H(8)); for(n=1, #T, print(T[n])) }

%Y Columns k=3..4 are A005581, A006468.

%Y Diagonals are A000108, A006419, A006420, A006421.

%Y Row sums are A000260.

%Y Cf. A002293, A027836, A082680, A269920, A342980, A343092.

%K nonn,tabl

%O 0,6

%A _Andrew Howroyd_, Apr 02 2021