%I #23 Jul 07 2023 10:22:30
%S 0,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,
%T 28,29,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,51,52,53,
%U 54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,71,72,73,74,75,76,77,78,79,81,82
%N Remove duplicates in the decimal digit-reversal of n.
%C Primitive terms in A004086.
%C Corresponds with A023804 for 1 <= n <= 73. The term 81 in this sequence is "100" in base 9, in which 2 digits are the same, therefore 81 does not appear in A023804.
%C 0 plus integers that are not a multiple of 10. - _Chai Wah Wu_, Mar 25 2021
%C Differs "in substance" from A209931, because e.g. this sequence contains 214 and 214 is not in A209931 (because 107|214 and 107 contains a zero). - _R. J. Mathar_, Jul 29 2021
%C Differs from the finite sequence A023804. - _R. J. Mathar_, Jul 07 2023
%H Michael De Vlieger, <a href="/A342851/b342851.txt">Table of n, a(n) for n = 1..10000</a>
%H Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, <a href="https://arxiv.org/abs/2012.04625">Finding Structure in Sequences of Real Numbers via Graph Theory: a Problem List</a>, arXiv:2012.04625 [math.CO], 2020.
%t Union@ IntegerReverse[Range[0, 100]]
%o (Python)
%o A342851_list = [d for d in range(10**3) if d == 0 or d % 10] # _Chai Wah Wu_, Mar 25 2021
%Y Cf. A004086. Essentially the same as A067251.
%K nonn,base,easy
%O 1,3
%A _Michael De Vlieger_, Mar 24 2021