Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Apr 27 2021 02:45:23
%S 0,0,0,1,1,0,0,1,0,1,0,2,1,1,3,1,2,0,0,4,3,0,0,4,7,2,0,5,2,5,0,1,0,3,
%T 4,3,4,0,6,7,3,4,0,3,4,0,0,5,0,9,10,9,3,0,5,8,0,4,0,17,4,0,9,1,19,2,0,
%U 6,2,7,0,7,7,7,23,2,8,12,0,10,0,5,0,15,27
%N a(n) is the number of convex integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d), integer diagonals e,f and integer area.
%C Without loss of generality we assume that a is the largest side length and that the diagonal e divides the convex quadrilateral into two triangles with sides a,b,e and c,d,e. The triangle inequality implies e > a-b and abs(e-c) < d < e+c.
%e a(4)=1 is the smallest possible solution and is a rectangle with a=c=4, b=d=3, e=f=5 and area 12. a(24)=4 includes the smallest possible solution with all sides a,b,c,d different and a=24, b=20, c=15, d=7, e=20, f=25 and area 234. Furthermore there are three rectangles with a=24,b=7, a=24,b=10 and a=24,b=18.
%t an={};
%t area[a_,b_,c_,d_,e_,f_]:=1/4 Sqrt[4e^2 f^2-(a^2+c^2-b^2-d^2)^2];
%t he[a_,b_,e_]:=1/(2 e) Sqrt[-(a-b-e) (a+b-e) (a-b+e) (a+b+e)];
%t paX[e_]:={e,0} (*vertex A coordinate*)
%t pbX[a_,b_,e_]:={(-a^2+b^2+e^2)/(2 e),he[a,b,e]}(*vertex B coordinate*)
%t pc={0,0};(*vertex C coordinate*)pdX[c_,d_,e_]:={(c^2-d^2+e^2)/(2 e),-he[c,d,e]}(*vertex D coordinate*)
%t convexQ[{bx_,by_},{dx_,dy_},e_]:=If[(by-dy) e>by dx-bx dy>0,True,False]
%t (*define order on tuples*)
%t gQ[x_,y_]:=Module[{z=x-y,res=False},Do[If[z[[i]]>0,res=True;Break[],If[z[[i]]<0,Break[]]],{i,1,6}];res]
%t (*check if tuple is canonical*)
%t canonicalQ[{a_,b_,c_,d_,e_,f_}]:=Module[{x={a,b,c,d,e,f}},If[(gQ[{b,a,d,c,e,f},x]||gQ[{d,c,b,a,e,f},x]||gQ[{c,d,a,b,e,f},x]||gQ[{b,c,d,a,f,e},x]||gQ[{a,d,c,b,f,e},x]||gQ[{c,b,a,d,f,e},x]||gQ[{d,a,b,c,f,e},x]),False,True]]
%t Do[cnt=0;
%t Do[pa=paX[e];pb=pbX[a,b,e];pd=pdX[c,d,e];
%t If[(f=Sqrt[(pb-pd).(pb-pd)];IntegerQ[f])&&(ar=area[a,b,c,d,e,f]; IntegerQ[ar])&&convexQ[pb,pd,e]&&canonicalQ[{a,b,c,d,e,f}],cnt++
%t (*;Print[{{a,b,c,d,e,f,ar},Graphics[Line[{pa,pb,pc,pd,pa}]]}]*)],{b,1,a},{e,a-b+1,a+b-1},{c,1,a},{d,Abs[e-c]+1,Min[a,e+c-1]}];
%t AppendTo[an,cnt],{a,1,85}]
%t an
%Y Cf. A340858 for trapezoids, A342720 and A342721 for concave integer quadrilaterals, A342722 for convex integer quadrilaterals with arbitrary area.
%K nonn
%O 1,12
%A _Herbert Kociemba_, Apr 25 2021