Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 11 2022 08:35:55
%S 3,18,123,843,5778,39603,271443,1860498,12752043,87403803,599074578,
%T 4106118243,28143753123,192900153618,1322157322203,9062201101803,
%U 62113250390418,425730551631123,2918000611027443,20000273725560978,137083915467899403,939587134549734843
%N Solutions x to the Pell-Fermat equation x^2 - 5*y^2 = 4.
%C This Pell equation is used to find the 12-gonal square numbers (see A342709).
%C The corresponding solutions y are in A033890.
%C Essentially the same as A246453. - _R. J. Mathar_, Mar 24 2021
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-1).
%F a(n) = 7*a(n-1) - a(n-2).
%F a(n) = 2*T(2*n+1, 3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - _Peter Bala_, Jul 02 2022
%e a(1)^2 - 5 * A033890(1)^2 = 18^2 - 5 * 8^2 = 4.
%t LinearRecurrence[{7, -1}, {3, 18}, 20] (* _Amiram Eldar_, Mar 19 2021 *)
%Y Cf. A033890, A342709.
%Y a(n) = 3*A049685(n). - _Hugo Pfoertner_, Mar 19 2021
%K nonn,easy
%O 0,1
%A _Bernard Schott_, Mar 19 2021