login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of primes in an n X n square array that do not appear on its border, with the elements of the square array being the numbers from 1..n^2, listed in increasing order by rows.
0

%I #8 May 31 2021 19:05:05

%S 0,0,1,2,4,4,8,10,14,15,21,21,27,31,36,42,48,46,58,61,68,73,83,83,96,

%T 100,110,114,127,123,144,146,157,165,175,179,201,201,212,221,241,235,

%U 258,265,275,282,303,301,328,330,346,351,381,377,403,406,427,433,455,452,486,493

%N a(n) is the number of primes in an n X n square array that do not appear on its border, with the elements of the square array being the numbers from 1..n^2, listed in increasing order by rows.

%F a(n) = pi(n*(n-1)) - pi(n) - Sum_{k=1..n-2} (pi(n*k+1) - pi(n*k)).

%e [1 2 3 4 5]

%e [1 2 3 4] [6 7 8 9 10]

%e [1 2 3] [5 6 7 8] [11 12 13 14 15]

%e [1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20]

%e [1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25]

%e ------------------------------------------------------------------------

%e n 1 2 3 4 5

%e ------------------------------------------------------------------------

%e a(n) 0 0 1 2 4

%e ------------------------------------------------------------------------

%e primes {} {} {5} {7,11} {7,13,17,19}

%e ------------------------------------------------------------------------

%t Table[PrimePi[n*(n - 1)] - PrimePi[n] - Sum[PrimePi[n*k + 1] - PrimePi[n*k], {k, n - 2}], {n, 100}]

%Y Cf. A000720 (pi), A038107, A221490, A344316 (on border), A344349.

%K nonn

%O 1,4

%A _Wesley Ivan Hurt_, May 18 2021