login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342681
Primes which, when added to their reversals, produce palindromic primes.
1
241, 443, 613, 641, 811, 20011, 20047, 20051, 20101, 20161, 20201, 20347, 20441, 20477, 21001, 21157, 21211, 21377, 21467, 22027, 22031, 22147, 22171, 22247, 22367, 23017, 23021, 23131, 23357, 23417, 23447, 24007, 24121, 24151, 24407, 25031, 25111, 25117, 25121, 26021, 26107, 26111, 26417, 27011, 27407, 28001
OFFSET
1,1
COMMENTS
It appears that all terms have an odd number of digits. - Robert Israel, Mar 24 2021
LINKS
EXAMPLE
241 is a prime number. The sum with its reverse is 383 = 241+142, which is a palindromic prime. Thus, 241 is in this sequence.
MAPLE
revdigs:= proc(n) local i, L;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
ispali:= proc(n) local L;
L:= convert(n, base, 10);
andmap(t -> L[t]=L[-t], [$1..nops(L)/2])
end proc:
filter:= proc(t) local r; r:= t + revdigs(t);
ispali(r) and isprime(r);
end proc:
select(filter, [seq(ithprime(i), i=1..10000)]); # Robert Israel, Mar 24 2021
MATHEMATICA
Select[Range[30000], PrimeQ[#] && PrimeQ[# + IntegerReverse[#]] && PalindromeQ[# + IntegerReverse[#]] &]
PROG
(PARI) isok(p) = my(q); isprime(p) && isprime(q=p+fromdigits(Vecrev(digits(p)))) && (q==fromdigits(Vecrev(digits(q)))); \\ Michel Marcus, Mar 18 2021
(Python)
from sympy import isprime, primerange
def ok(p):
t = p + int(str(p)[::-1]); strt = str(t)
return strt == strt[::-1] and isprime(t)
print([p for p in primerange(1, 28002) if ok(p)]) # Michael S. Branicky, Mar 18 2021
(Magma) [p: p in PrimesUpTo(10^6) | IsPrime(t) and Intseq(t) eq Reverse(Intseq(t)) where t is p+Seqint(Reverse(Intseq(p)))]; // Bruno Berselli, Mar 23 2021
CROSSREFS
Cf. A002385. Subsequence of A061783 (Luhn primes: primes p such that p + (p reversed) is also a prime).
Sequence in context: A325088 A321582 A137771 * A108831 A068706 A157961
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova, Mar 18 2021
STATUS
approved