login
A342588
T(n,k) is the number of labeled connected posets of n labeled elements with k covering relations (n>=1, k>=0). Triangle read by rows.
2
1, 0, 2, 0, 0, 12, 0, 0, 0, 128, 18, 0, 0, 0, 0, 2000, 960, 100, 0, 0, 0, 0, 0, 41472, 43320, 15000, 1710, 140, 0, 0, 0, 0, 0, 0, 1075648, 1985760, 1453200, 490560, 90594, 10080, 770, 0, 0, 0, 0, 0, 0, 0, 33554432, 96937680, 122360000, 82220880, 32527488, 8205288, 1396640, 179760, 20048, 1050
OFFSET
1,3
EXAMPLE
There are 8 connected unlabeled Hasse diagrams on 4 nodes with 3 arcs. 4 of them have automorphism group order 1, 2 of them have automorphism group order 2 and 2 have order 6. So T(4,3) = 4*4!/1 + 2*4!/2 + 2*4!/6 = 128.
There are 2 connected unlabeled Hasse diagrams on 4 nodes with 4 arcs, one has automorphism group order 2, the other 4. So T(4,4) = 1*4!/2+1*4!/4 = 18.
The triangle starts
1: 1
2: 0 2
3: 0 0 12
4: 0 0 0 128 18
5: 0 0 0 0 2000 960 100
6: 0 0 0 0 0 41472 43320 15000 1710 140
7: 0 0 0 0 0 0 1075648 1985760 1453200 490560 90594 10080 770
CROSSREFS
Cf. A001927 (row sums), A342589 (not necessarily connected), A342590 (unlabeled).
Sequence in context: A000171 A054922 A289651 * A302751 A350909 A244139
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Mar 16 2021
STATUS
approved