login
Noncube factors k > 0 such that k*x^3 + 1 produces a new minimum of its Hardy-Littlewood constant.
1

%I #6 May 05 2021 08:42:21

%S 2,3,5,7,11,13,29,43,83,239,463,911,1483,1721,3067,4187,10613,12433,

%T 15287,26447

%N Noncube factors k > 0 such that k*x^3 + 1 produces a new minimum of its Hardy-Littlewood constant.

%C a(21)>40000.

%C For more information and references see A331950.

%C 4187=53*79 is the first nonprime term.

%e n a(n) Hardy-Littlewood np / (expected number of primes)

%e constant (rounded) obtained from Li(a(n)*(10^9)^3+1)

%e np (x<=10^9) (similar to table in A331946)

%e 1 2 2.597079115 43503785 2.69054

%e 2 3 2.085815908 34707483 2.16060

%e 3 5 1.428347905 23566489 1.47910

%e 4 7 1.290763004 21179402 1.33641

%e 5 11 1.241279598 20211462 1.28447

%e ...

%e 18 12433 0.450506688 6582602 0.46462

%e 19 15287 0.422449638 6150009 0.43536

%e 20 26447 0.418323708 6045844 0.43130

%Y Cf. A331946 (similar for k*x^2+1), A331950, A342549.

%K nonn,hard,more

%O 1,1

%A _Hugo Pfoertner_, May 03 2021