%I #6 May 05 2021 08:42:21
%S 2,3,5,7,11,13,29,43,83,239,463,911,1483,1721,3067,4187,10613,12433,
%T 15287,26447
%N Noncube factors k > 0 such that k*x^3 + 1 produces a new minimum of its Hardy-Littlewood constant.
%C a(21)>40000.
%C For more information and references see A331950.
%C 4187=53*79 is the first nonprime term.
%e n a(n) Hardy-Littlewood np / (expected number of primes)
%e constant (rounded) obtained from Li(a(n)*(10^9)^3+1)
%e np (x<=10^9) (similar to table in A331946)
%e 1 2 2.597079115 43503785 2.69054
%e 2 3 2.085815908 34707483 2.16060
%e 3 5 1.428347905 23566489 1.47910
%e 4 7 1.290763004 21179402 1.33641
%e 5 11 1.241279598 20211462 1.28447
%e ...
%e 18 12433 0.450506688 6582602 0.46462
%e 19 15287 0.422449638 6150009 0.43536
%e 20 26447 0.418323708 6045844 0.43130
%Y Cf. A331946 (similar for k*x^2+1), A331950, A342549.
%K nonn,hard,more
%O 1,1
%A _Hugo Pfoertner_, May 03 2021