login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A066194.
1

%I #72 Jan 05 2023 21:19:27

%S 1,3,7,10,18,25,30,36,52,67,80,94,103,113,125,136,168,199,228,258,283,

%T 309,337,364,381,399,419,438,462,485,506,528,592,655,716,778,835,893,

%U 953,1012,1061,1111,1163,1214,1270,1325,1378,1432,1465,1499,1535,1570

%N Partial sums of A066194.

%C n^2/2 + n/2 <= a(n) <= (31/50)*n^2 + n/2. The lower and upper bounds are attained at n=2^k and n=5*2^k for k >= 0.

%H Alois P. Heinz, <a href="/A342448/b342448.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = A268836(n)/2 + n. - _Kevin Ryde_, Mar 12 2021

%F a(1) = 1; a(n) = [n == 0 (mod 2)]*(4*a(n/2) - n/2) + [n == 1 (mod 2)]*(2*a((n - 1)/2)+2*a((n + 1)/2)-(n-1)/2 - A010060(n)) where [] is an Iverson bracket

%p b:= proc(n) option remember; `if`(n<2, n,

%p Bits[Xor](n, b(iquo(n, 2))))

%p end:

%p a:= proc(n) a(n):= 1+`if`(n<2, 0, a(n-1)+b(n-1)) end:

%p seq(a(n), n=1..60); # _Alois P. Heinz_, Mar 14 2021

%t a[1]=1;

%t a[n_/;EvenQ[n]]:= a[n] = 4a[n/2] - n/2;

%t a[n_/;OddQ[n]]:= a[n] = 2a[(n - 1)/2]+2a[(n + 1)/2]-(n-1)/2 - ThueMorse[n];

%t (* Second program: *)

%t b[n_] := If[n==0, 0, BitXor@@Table[Floor[n/2^m], {m, 0, Floor[Log[2, n]]}]];

%t A066194 = Table[b[n]+1, {n, 0, 60}];

%t A066194 // Accumulate (* _Jean-François Alcover_, Sep 10 2022 *)

%Y Cf. A066194, A268836, A007814, A000120, A010060, A000035.

%K nonn,look

%O 1,2

%A _John Erickson_, Mar 12 2021