login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of A342002 and its Dirichlet inverse.
6

%I #11 Mar 14 2021 20:42:58

%S 2,0,0,1,0,10,0,3,25,14,0,7,0,14,70,15,0,-3,0,33,70,82,0,45,49,18,185,

%T 29,0,8,0,35,410,94,98,28,0,22,90,97,0,0,0,79,279,106,0,-27,49,61,470,

%U 43,0,-315,574,111,110,118,0,-199,0,18,339,43,126,-876,0,81,530,152,0,6,0,118,-87,153,574,412,0,267

%N Sum of A342002 and its Dirichlet inverse.

%C Zeros occurring on composite n are rare: 42 and 4718 are the first two such positions.

%C It seems that many nonzero squares occur on square n.

%H Antti Karttunen, <a href="/A342419/b342419.txt">Table of n, a(n) for n = 1..11550</a>

%F a(n) = A342002(n) + A342417(n).

%o (PARI)

%o up_to = 11550;

%o DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.

%o A342002(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= p^(e>0); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };

%o v342417 = DirInverseCorrect(vector(up_to,n,A342002(n)));

%o A342417(n) = v342417[n];

%o A342419(n) = (A342002(n)+A342417(n));

%Y Cf. A342002, A342417.

%K sign

%O 1,1

%A _Antti Karttunen_, Mar 13 2021