The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342369 If n is congruent to 2 (mod 3), then a(n) = (2*n - 1)/3; otherwise, a(n) = 2*n. 4

%I #59 Mar 24 2021 03:13:17

%S 0,2,1,6,8,3,12,14,5,18,20,7,24,26,9,30,32,11,36,38,13,42,44,15,48,50,

%T 17,54,56,19,60,62,21,66,68,23,72,74,25,78,80,27,84,86,29,90,92,31,96,

%U 98,33,102,104,35,108,110,37,114,116,39,120,122,41,126,128,43,132,134,45,138,140,47,144,146

%N If n is congruent to 2 (mod 3), then a(n) = (2*n - 1)/3; otherwise, a(n) = 2*n.

%C This sequence is a permutation of all numbers not congruent to 4 (mod 6) (A047256).

%C This sequence has no finite cycles other than (2,1) under recursion, because of all cycles of permutation A093545(n), only one cycle (2,1) is without any number congruent to 4 (mod 6). See section "formula" first entry here. After a finite number of recursions it will reach only numbers divisible by 3 under further recursion.

%C m = a(n) is the smallest solution to A014682(m) = n.

%C If we define f(n) = 2*n and j(n) as an arbitrary recursion into a(n) and/or f(n) ( two examples: j(n) = a(a(n)) or j(n) = a(f(a(n))) ), then for all m, k and n = A014682^k(m), exists a j(n) that allows m = j(n). "^k" means recursion here.

%C Proving the Collatz conjecture could be done by proving that for all positive integers m, a function j(n) (see first comment) could be designed such that m = j(1). All numbers greater than 4 can be reached by a^k(6*p - 2) with exactly one p and k. The Collatz conjecture cannot be true if 3*p - 1 = a^k(6*p - 2) exists.

%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).

%F a(n) = A093545(n) + floor((1 + A093545(n))/5).

%F a(3*n) = a(3*(n-1)) + 6.

%F a(3*n - 1) = a(3*(n-1) - 1) + 2.

%F a(3*n - 2) = a(3*(n-1) - 2) + 6.

%F a(n) = 14*n - 2*a(n-1) - 3*a(n-2) - 2*a(n-3) - a(n-4) - 29 for n >= 4.

%F A014682(a(n)) = n.

%F a(A014682(n)) = (n+2)/3 - 1 if n == 4 (mod 6).

%F a(A014682(n)) = n if n !== 4 (mod 6).

%F a^k(3*n) = (3*n)*2^k where a^2(3*n) is a(a(3*n)) = (3*n)*4.

%F G.f.: -(-x^5 - 4*x^4 - 6*x^3 - x^2 - 2*x)/(x^6 - 2*x^3 + 1).

%F a(n) = (A093544(n+1) - 1)/2. - _Hugo Pfoertner_, Mar 10 2021

%t Array[If[Mod[#, 3] == 2, (2 # - 1)/3, 2 #] &, 74, 0] (* _Michael De Vlieger_, Mar 14 2021 *)

%o (MATLAB)

%o function a = A342369( max_n )

%o a(1) = 0;

%o for n=1:max_n

%o if mod(n,3) == 2

%o a(n) = (2*n - 1)/3;

%o else

%o a(n) = 2*n;

%o end

%o end

%o end

%o (PARI) a(n) = if ((n%3)==2, (2*n - 1)/3, 2*n); \\ _Michel Marcus_, Mar 09 2021

%Y Cf. A093544, A093545, A014682, A047256.

%K nonn,easy

%O 0,2

%A _Thomas Scheuerle_, Mar 09 2021.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 04:33 EDT 2024. Contains 372528 sequences. (Running on oeis4.)