login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of pandiagonal Latin squares of order 2n+1.
5

%I #13 May 26 2021 21:41:49

%S 1,0,240,20160,0,319334400,77127879628800,0

%N Number of pandiagonal Latin squares of order 2n+1.

%C A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.

%C For orders 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A338562(n) for n < 6. For n=6 (order 13) this is not true (from Dabbaghian and Wu).

%C Pandiagonal Latin squares exist only for odd orders not divisible by 3. - _Andrew Howroyd_, May 26 2021

%H A.O.L. Atkin, L. Hay, and R. G. Larson, <a href="https://doi.org/10.1016/0898-1221(83)90130-X">Enumeration and construction of pandiagonal Latin squares of prime order</a>, Computers & Mathematics with Applications, Volume. 9, Iss. 2, 1983, pp. 267-292.

%H Vahid Dabbaghian and Tiankuang Wu, <a href="http://dx.doi.org/10.1016/j.jda.2014.12.001">Constructing non-cyclic pandiagonal Latin squares of prime orders</a>, Journal of Discrete Algorithms 30, 2015.

%F a(n) = A338620(n) * (2*n+1)!.

%e Example of a cyclic pandiagonal Latin square of order 5:

%e 0 1 2 3 4

%e 2 3 4 0 1

%e 4 0 1 2 3

%e 1 2 3 4 0

%e 3 4 0 1 2

%e Example of a cyclic pandiagonal Latin square of order 7:

%e 0 1 2 3 4 5 6

%e 2 3 4 5 6 0 1

%e 4 5 6 0 1 2 3

%e 6 0 1 2 3 4 5

%e 1 2 3 4 5 6 0

%e 3 4 5 6 0 1 2

%e 5 6 0 1 2 3 4

%e Example of a cyclic pandiagonal Latin square of order 11:

%e 0 1 2 3 4 5 6 7 8 9 10

%e 2 3 4 5 6 7 8 9 10 0 1

%e 4 5 6 7 8 9 10 0 1 2 3

%e 6 7 8 9 10 0 1 2 3 4 5

%e 8 9 10 0 1 2 3 4 5 6 7

%e 10 0 1 2 3 4 5 6 7 8 9

%e 1 2 3 4 5 6 7 8 9 10 0

%e 3 4 5 6 7 8 9 10 0 1 2

%e 5 6 7 8 9 10 0 1 2 3 4

%e 7 8 9 10 0 1 2 3 4 5 6

%e 9 10 0 1 2 3 4 5 6 7 8

%e For order 13 there is a square

%e 7 1 0 3 6 5 12 2 8 9 10 11 4

%e 2 3 4 10 0 7 6 9 12 11 5 8 1

%e 4 11 1 7 8 9 10 3 6 0 12 2 5

%e 6 5 8 11 10 4 7 0 1 2 3 9 12

%e 8 9 2 5 12 11 1 4 3 10 0 6 7

%e 3 6 12 0 1 2 8 11 5 4 7 10 9

%e 10 0 3 2 9 12 5 6 7 8 1 4 11

%e 1 7 10 4 3 6 9 8 2 5 11 12 0

%e 11 4 5 6 7 0 3 10 9 12 2 1 8

%e 5 8 7 1 4 10 11 12 0 6 9 3 2

%e 12 2 9 8 11 1 0 7 10 3 4 5 6

%e 9 10 11 12 5 8 2 1 4 7 6 0 3

%e 0 12 6 9 2 3 4 5 11 1 8 7 10

%e that is pandiagonal but not cyclic (Dabbaghian and Wu).

%Y Cf. A338562, A338620.

%K nonn,more,hard

%O 0,3

%A _Eduard I. Vatutin_, Mar 08 2021

%E Zero terms for even orders removed by _Andrew Howroyd_, May 26 2021