Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 07 2021 17:31:03
%S 31,41,43,59,281,283,827,829,857,859,2081,2083,2381,2593,2711,2801,
%T 2803,4003,4273,4517,4933,6359,6689,6947,8087,8089,8387,8537,8599,
%U 8627,8839,20479,20509,20809,20981,20983,21019,21191,21193,21319,21379,21491,21493,21523,21589,21739,22699,22741,23059
%N Twin primes p such that the absolute difference of p and the reverse of its twin is a twin prime.
%H Robert Israel, <a href="/A342216/b342216.txt">Table of n, a(n) for n = 1..10000</a>
%e For n = 4, 59 is a twin prime, the reverse of its twin 61 is 16, and |59 - 16| = 43 is a twin prime, so 59 is in the sequence.
%p digrev:= proc(n) local L,i;
%p L:= convert(n,base,10);
%p add(10^(i-1)*L[-i],i=1..nops(L))
%p end proc:
%p filter:= proc(p,q) local t;
%p t:= abs(p - digrev(q));
%p isprime(t) and (isprime(t-2) or isprime(t+2))
%p end proc:
%p q:= 2: R:= NULL: count:= 0:
%p while count < 100 do
%p p:= q; q:= nextprime(q);
%p if q-p = 2 then
%p if filter(p,q) then count:= count+1; R:= R, p fi;
%p if filter(q,p) then count:= count+1; R:= R, q fi;
%p fi
%p od:
%p R;
%Y Cf. A004086, A001097.
%K nonn,base
%O 1,1
%A _J. M. Bergot_ and _Robert Israel_, Mar 05 2021