%I
%S 1,1,1,1,5,15,35,70,126,211
%N Largest number of maximal planar nodeinduced subgraphs of an nnode graph.
%F a(m+n) >= a(m)*a(n).
%F liminf a(n)^(1/n) >= 381^(1/11) = 1.71644... .
%e For 4 <= n <= 9, a(n) = binomial(n,4) = A000332(n) and the complete graph is optimal, but a(10) = 211 > 210 = binomial(10,4) with the optimal graph being the complete graph with the edges of two nodedisjoint triangles removed. The optimal graph is unique when 5 <= n <= 10.
%e a(11) >= 381, because the 11node complete graph with the edges of three nodedisjoint triangles removed has 381 maximal planar subgraphs.
%Y Cf. A000332, A342211, A342212, A342324.
%K nonn,more
%O 1,5
%A _Pontus von BrÃ¶mssen_, Mar 05 2021
