Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Apr 27 2021 02:11:43
%S 1,1,0,1,2,0,1,4,5,0,1,6,18,12,0,1,8,39,80,29,0,1,10,68,252,356,70,0,
%T 1,12,105,576,1629,1584,169,0,1,14,150,1100,4880,10530,7048,408,0,1,
%U 16,203,1872,11525,41344,68067,31360,985,0,1,18,264,2940,23364,120750,350272,439992,139536,2378,0
%N Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - 2*k*x - k*x^2).
%H Seiichi Manyama, <a href="/A342134/b342134.txt">Antidiagonals n = 0..139, flattened</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F T(0,k) = 1, T(1,k) = 2*k and T(n,k) = k*(2*T(n-1,k) + T(n-2,k)) for n > 1.
%F T(n,k) = Sum_{j=0..floor(n/2)} (2*k)^(n-j) * (1/2)^j * binomial(n-j,j) = Sum_{j=0..n} (2*k)^j * (1/2)^(n-j) * binomial(j,n-j).
%F T(n,k) = (-sqrt(k)*i)^n * U(n, sqrt(k)*i) where U(n, x) is a Chebyshev polynomial of the second kind.
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 0, 2, 4, 6, 8, 10, ...
%e 0, 5, 18, 39, 68, 105, ...
%e 0, 12, 80, 252, 576, 1100, ...
%e 0, 29, 356, 1629, 4880, 11525, ...
%e 0, 70, 1584, 10530, 41344, 120750, ...
%p T:= (n, k)-> (<<0|1>, <k|2*k>>^(n+1))[1, 2]:
%p seq(seq(T(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Mar 01 2021
%t T[n_, k_] := Sum[If[k == j == 0, 1, (2*k)^j] * 2^(j - n) * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Apr 27 2021 *)
%o (PARI) T(n, k) = sum(j=0, n\2, (2*k)^(n-j)*2^(-j)*binomial(n-j, j));
%o (PARI) T(n, k) = sum(j=0, n, (2*k)^j*2^(j-n)*binomial(j, n-j));
%o (PARI) T(n, k) = round((-sqrt(k)*I)^n*polchebyshev(n, 2, sqrt(k)*I));
%Y Columns 0..5 give A000007, A000129(n+1), A090017(n+1), A090018, A190510(n+1), A190955(n+1).
%Y Rows 0..2 give A000012, A005843, A007742.
%Y Main diagonal gives A109517(n+1).
%Y Cf. A342120, A342129, A342133.
%K nonn,tabl
%O 0,5
%A _Seiichi Manyama_, Mar 01 2021