Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Feb 28 2021 19:52:19
%S 383,12227,44519,44687,56003,97523,130259,148727,160739,169007,208799,
%T 258887,270563,281783,331883,336143,353099,364979,498119,501707,
%U 550679,573107,577667,716747,753023,775367,781007,784727,861299,887543,1084247,1085159,1099139
%N Primes p such that p^9 - 1 has 16 divisors.
%C Conjecture: sequence is infinite.
%C The only primes p such that p^9 - 1 has fewer than A309906(9)=16 divisors are p=2 (2^9 - 1 = 511 = 7*73 has 4 divisors) and p=3 (3^9 - 1 = 19682 = 2*13*757 has 8 divisors).
%C For every term p, p^9 - 1 is of the form 2*q*r*s, where q = (p-1)/2, r = (p^2 + p + 1), and s = (p^6 + p^3 + 1) are primes (see Example section).
%C The Generalized Dickson's Conjecture implies there are infinitely many p such that p, (p-1)/2, p^2+p+1 and p^6+p^3+1 are prime. - _Robert Israel_, Feb 28 2021
%H Robert Israel, <a href="/A342065/b342065.txt">Table of n, a(n) for n = 1..1000</a>
%e factorization of p^9 - 1
%e p = ===================================================
%e n a(n) 2 * (p-1)/2 * (p^2+p+1) * (p^6 + p^3 + 1)
%e - ----- ---------------------------------------------------
%e 1 383 2 * 191 * 147073 * 3156404483062657
%e 2 12227 2 * 6113 * 149511757 * 3341330794198073514753973
%p R:= NULL: count:= 0: q:= 1:
%p while count < 100 do
%p q:= nextprime(q);
%p p:= 2*q+1;
%p if isprime(p) and isprime(p^2+p+1) and isprime(p^6+p^3+1) then
%p count:= count+1; R:= R, p;
%p fi
%p od:
%p R; # _Robert Israel_, Feb 28 2021
%Y Cf. A000005, A000040, A309906, A341670.
%K nonn
%O 1,1
%A _Jon E. Schoenfield_, Feb 27 2021