Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 24 2022 09:58:48
%S 1,0,0,0,0,0,1,0,1,0,1,0,2,0,2,0,1,0,5,0,4,0,2,0,9,0,7,1,7,1,14,0,10,
%T 0,12,2,22,0,19,2,22,3,34,1,31,4,32,5,54,3,48,7,50,9,78,7,70,11,76,16,
%U 113,9,100,19,114,26,155,17,147,32,164,37,212,26
%N Number of partitions of n into 10 distinct primes (counting 1 as a prime).
%p b:= proc(n, i) option remember; series(`if`(n=0, 1,
%p `if`(i<0, 0, (p-> `if`(p>n, 0, x*b(n-p, i-1)))(
%p `if`(i=0, 1, ithprime(i)))+b(n, i-1))), x, 11)
%p end:
%p a:= n-> coeff(b(n, numtheory[pi](n)), x, 10):
%p seq(a(n), n=101..174); # _Alois P. Heinz_, Feb 24 2021
%t b[n_, i_] := b[n, i] = Series[If[n == 0, 1,
%t If[i < 0, 0, Function[p, If[p > n, 0, x*b[n - p, i - 1]]][
%t If[i == 0, 1, Prime[i]]] + b[n, i - 1]]], {x, 0, 11}];
%t a[n_] := Coefficient[b[n, PrimePi[n]], x, 10];
%t Table[a[n], {n, 101, 174}] (* _Jean-François Alcover_, Feb 24 2022, after _Alois P. Heinz_ *)
%Y Cf. A008578, A036497, A219204, A341972, A341973, A341974, A341975, A341976, A341977, A341978, A341979, A341980.
%K nonn
%O 101,13
%A _Ilya Gutkovskiy_, Feb 24 2021