login
Numbers that are the sum of five fourth powers in nine or more ways.
7

%I #14 May 10 2024 02:17:19

%S 619090,775714,954979,1100579,1179379,1186834,1205539,1243699,1357315,

%T 1367539,1373859,1422595,1431234,1436419,1511299,1536019,1574850,

%U 1699234,1713859,1734899,1801459,1839874,1858594,1863859,1877394,1880850,1882579,1950355,1951650

%N Numbers that are the sum of five fourth powers in nine or more ways.

%H David Consiglio, Jr., <a href="/A341891/b341891.txt">Table of n, a(n) for n = 1..10000</a>

%e 619090 = 1^4 + 2^4 + 18^4 + 22^4 + 23^4

%e = 1^4 + 3^4 + 4^4 + 8^4 + 28^4

%e = 1^4 + 11^4 + 14^4 + 22^4 + 24^4

%e = 2^4 + 2^4 + 8^4 + 17^4 + 27^4

%e = 2^4 + 13^4 + 13^4 + 18^4 + 26^4

%e = 3^4 + 6^4 + 12^4 + 16^4 + 27^4

%e = 4^4 + 12^4 + 14^4 + 23^4 + 23^4

%e = 9^4 + 12^4 + 16^4 + 21^4 + 24^4

%e = 14^4 + 16^4 + 18^4 + 19^4 + 23^4

%e so 619090 is a term.

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**4 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 5):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v >= 9])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A341892, A341897, A344926, A344944, A345185, A345566.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jun 04 2021