login
Square array T(n, k), n, k >= 0, read by antidiagonals upwards; for any number m with runs in binary expansion (r_1, ..., r_j), let R(m) = {r_1 + ... + r_j, r_2 + ... + r_j, ..., r_j}; T(n, k) is the unique number t such that R(t) equals R(n) minus R(k).
3

%I #12 Feb 24 2021 08:20:45

%S 0,1,0,2,0,0,3,3,0,0,4,3,0,1,0,5,4,0,1,1,0,6,4,7,0,1,0,0,7,7,7,7,0,0,

%T 0,0,8,7,7,6,0,0,3,1,0,9,8,7,6,1,0,3,2,1,0,10,8,8,7,1,0,3,3,2,0,0,11,

%U 11,8,8,0,0,3,3,3,3,0,0,12,11,8,9,15,0,0,2,3,3,0,1,0

%N Square array T(n, k), n, k >= 0, read by antidiagonals upwards; for any number m with runs in binary expansion (r_1, ..., r_j), let R(m) = {r_1 + ... + r_j, r_2 + ... + r_j, ..., r_j}; T(n, k) is the unique number t such that R(t) equals R(n) minus R(k).

%C For any m > 0, R(m) contains the partial sums of the m-th row of A227736; by convention, R(0) = {}.

%C This sequence uses set subtraction, and is related to:

%C - A003987 which uses set difference,

%C - A341839 which uses set union,

%C - A341840 which uses set intersection.

%H Rémy Sigrist, <a href="/A341841/b341841.txt">Table of n, a(n) for n = 0..10010</a>

%H Rémy Sigrist, <a href="/A341841/a341841.png">Colored representation of the table for n, k < 2^10</a>

%H Rémy Sigrist, <a href="/A341841/a341841.gp.txt">PARI program for A341841</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F T(n, n) = 0.

%F T(n, 0) = n.

%F T(T(n, k), k) = T(n, k).

%F A070939(T(n, k)) <= A070939(n).

%F A003188(T(n, k)) = A003188(n) - (A003188(n) AND A003188(k)) (where AND denotes the bitwise AND operator).

%e Array T(n, k) begins:

%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e ---+--------------------------------------------------------------

%e 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%e 1| 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

%e 2| 2 3 0 1 1 0 3 2 2 3 0 1 1 0 3 2

%e 3| 3 3 0 0 0 0 3 3 3 3 0 0 0 0 3 3

%e 4| 4 4 7 7 0 0 3 3 3 3 0 0 7 7 4 4

%e 5| 5 4 7 6 1 0 3 2 2 3 0 1 6 7 4 5

%e 6| 6 7 7 6 1 0 0 1 1 0 0 1 6 7 7 6

%e 7| 7 7 7 7 0 0 0 0 0 0 0 0 7 7 7 7

%e 8| 8 8 8 8 15 15 15 15 0 0 0 0 7 7 7 7

%e 9| 9 8 8 9 14 15 15 14 1 0 0 1 6 7 7 6

%e 10| 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

%e 11| 11 11 8 8 15 15 12 12 3 3 0 0 7 7 4 4

%e 12| 12 12 15 15 15 15 12 12 3 3 0 0 0 0 3 3

%e 13| 13 12 15 14 14 15 12 13 2 3 0 1 1 0 3 2

%e 14| 14 15 15 14 14 15 15 14 1 0 0 1 1 0 0 1

%e 15| 15 15 15 15 15 15 15 15 0 0 0 0 0 0 0 0

%o (PARI) See Links section.

%Y Cf. A003188, A003987, A070939, A227736, A341839, A341840.

%K nonn,tabl,base

%O 0,4

%A _Rémy Sigrist_, Feb 21 2021