Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jul 20 2022 01:35:47
%S 1,0,0,7,0,0,21,0,0,42,0,0,77,0,0,126,0,0,168,7,0,211,42,0,252,105,0,
%T 252,182,0,245,315,0,231,469,0,175,574,21,140,735,105,105,854,210,56,
%U 875,315,42,987,525,21,952,693,7,882,840,42,924,1155,140,770,1260,211,749,1470
%N Number of ways to write n as an ordered sum of 7 nonzero tetrahedral numbers.
%H G. C. Greubel, <a href="/A341806/b341806.txt">Table of n, a(n) for n = 7..1000</a>
%F G.f.: ( Sum_{k>=1} x^binomial(k+2,3) )^7.
%t nmax = 72; CoefficientList[Series[Sum[x^Binomial[k + 2, 3], {k, 1, nmax}]^7, {x, 0, nmax}], x] // Drop[#, 7] &
%o (Magma)
%o R<x>:=PowerSeriesRing(Integers(), 80);
%o Coefficients(R!( (&+[x^Binomial(j+2,3): j in [1..20]])^7 )); // _G. C. Greubel_, Jul 19 2022
%o (SageMath)
%o def f(m, x): return ( sum( x^(binomial(j+2,3)) for j in (1..20) ) )^m
%o def A341806_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( f(7, x) ).list()
%o a=A341806_list(100); a[7:81] # _G. C. Greubel_, Jul 19 2022
%Y Cf. A000292, A023533, A023670, A282582, A340952, A341778, A341794, A341795, A341796, A341797, A341807, A341808, A341809.
%K nonn
%O 7,4
%A _Ilya Gutkovskiy_, Feb 20 2021