login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341802
Primes p such that (q*s-p*r)/2 and |p*s-q*r|/2 are both prime, where p,q,r,s are consecutive primes.
1
313, 773, 1451, 1733, 2417, 2531, 3041, 3673, 7187, 7297, 7309, 7349, 9479, 9649, 10247, 10631, 11003, 11941, 12197, 12739, 13163, 14449, 16427, 16811, 19801, 21089, 22639, 24029, 24781, 26141, 26237, 26713, 29399, 30097, 30161, 30869, 31051, 33083, 33931, 34667, 37907, 40519, 40543, 40973, 41387
OFFSET
1,1
COMMENTS
Intersection of A342505 with union of A342508 and A342509.
LINKS
EXAMPLE
a(3) = 1451 is a term because 1451, 1453, 1459, 1471 are consecutive primes with (1453*1471-1451*1459)/2 = 10177 and |1451*1471-1453*1459|/2 = 7247 both prime.
MAPLE
R:= NULL: count:= 0:
q:= 3: r:= 5: s:= 7:
while count < 100 do
p:= q; q:= r; r:= s; s:= nextprime(s);
if isprime(abs(p*s-q*r)/2) and isprime((q*s-p*r)/2) then
count:= count+1; R:= R, p;
fi
od:
R:
MATHEMATICA
Select[Partition[Prime[Range[4500]], 4, 1], AllTrue[{(#[[2]]#[[4]]-#[[1]]#[[3]])/2, (#[[1]]#[[4]]- #[[2]] #[[3]])/2}, PrimeQ]&][[;; , 1]] (* Harvey P. Dale, Dec 24 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Mar 14 2021
STATUS
approved