login
A341731
The array L(n,k) of Barcucci et al. (2021) read by antidiagonals.
2
1, 2, 2, 4, 4, 6, 8, 8, 54, 8, 16, 16, 486, 104, 21, 32, 32, 4374, 1352, 630, 26, 64, 64
OFFSET
2,2
LINKS
Elena Barcucci, Antonio Bernini, Stefano Bilotta and Renzo Pinzani, Non-Overlapping Matrices via Dyck Words, Enumerative Combinatorics and Applications, ECA 1:2 (2021) #S2R9 [ecajournal.haifa.ac.il].
EXAMPLE
The array begins:
n\k 4 5 6 7 8 9 10 ...
------------------- ...
2 1 2 6 8 21 26 67 ...
3 2 4 54 104 630 1040 6.2*10^3 ...
4 4 8 486 1352 1.9*10^4 4.1*10^4 5.9*10^5 ...
5 8 16 4374 1.7*10^4 5.7*10^5 1.6*10^6 5.5*10^7 ...
6 16 32 3.9*10^4 2.2*10^5 1.7*10^7 6.6*10^7 5.2*10^9 ...
7 32 64 3.5*10^5 3.0*10^6 5.1*10^8 2.7*10^9 4.9*10^11 ...
8 64 128 3.1*10^6 3.8*10^7 1.5*10^10 1.1*10^11 4.6*10^13 ...
9 128 256 2.8*10^7 5.0*10^8 4.6*10^11 4.2*10^12 4.3*10^15 ...
...
The first few antidiagonals are:
1,
2,2,
4,4,6,
8,8,54,8,
16,16,486,104,21,
32,32,4374,1352,630,26,
...
CROSSREFS
Rows 2 and 3 are A341732 and A341733.
Sequence in context: A218064 A352227 A334001 * A183002 A211859 A057601
KEYWORD
nonn,tabl,more
AUTHOR
N. J. A. Sloane, Mar 07 2021
STATUS
approved