login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341712
a(n) = A120963(2*n)/2.
3
3, 12, 39, 112, 292, 710, 1629, 3567, 7505, 15266, 30140, 57983, 108981, 200625, 362433, 643653, 1125269, 1939149, 3297411, 5538254, 9195371, 15104245, 24561098, 39562657, 63160404, 99987453, 157029090, 244754385, 378754786, 582124254, 888874067, 1348842728
OFFSET
1,1
COMMENTS
A bisection of A341710.
MAPLE
with(numtheory):
b:= proc(n) option remember; nops(invphi(n)) end:
g:= proc(n) option remember; `if`(n=0, 1, add(
g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)
end:
a:= n-> g(2*n)/2:
seq(a(n), n=1..40); # Alois P. Heinz, Feb 19 2021
MATHEMATICA
terms = 64; (* number of terms of A120963 *)
nmax = Floor[terms/2];
S[m_] := S[m] = CoefficientList[Product[1/(1 - x^EulerPhi[k]),
{k, 1, m*terms}] + O[x]^(terms+1), x];
S[m = 1];
S[m++];
While[S[m] != S[m-1], m++];
A120963 = S[m];
a[n_ /; 1 <= n <= nmax] := A120963[[2n+1]]/2;
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, May 12 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 19 2021
STATUS
approved