Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 02 2022 12:08:42
%S -1,-1,0,0,1,0,-1,0,-1,-1,1,0,-1,0,-1,-1,-1,0,-1,0,-1,-1,1,0,1,12,-1,
%T 4,-1,0,-1,0,-1,-1,1,-1,-1,0,-1,-1,-1,0,1,0,-1,-1,7,0,7,-1,-1,4,15,0,
%U -1,12,9,-1,1,0,13,0,-1,-1,-1,-1,-1,0,57,-1,1,0,-1,0
%N a(n) is the smallest k < n such that the decimal concatenation n||n-1||n-2||...||n-k is prime, or -1 if no such prime exists.
%C A variation of A341716. a(n) = n-1 for n = 82. Are there other n such that a(n) = n-1?
%C Similar argument as in A341716 shows that if n > 3 and a(n) >= 0, then n-a(n) is odd, a(n) !== 2 (mod 3) and 2n-a(n) !== 0 (mod 3).
%H Robert Israel, <a href="/A341702/b341702.txt">Table of n, a(n) for n = 0..2000</a>
%F a(n) = n-A341701(n).
%F a(p) = 0 if and only if p is prime.
%e a(10) = 1 since 109 is prime. a(22) = 1 since 2221 is prime.
%p tcat:= proc(x,y) x*10^(1+ilog10(y))+y end proc:
%p f:= proc(n) local x,k;
%p x:= n;
%p for k from 0 to n-1 do
%p if isprime(x) then return k fi;
%p x:= tcat(x,n-k-1)
%p od;
%p -1
%p end proc:
%p map(f, [$0..100]); # _Robert Israel_, Mar 02 2022
%o (Python)
%o from sympy import isprime
%o def A341702(n):
%o k, m = n, n-1
%o while not isprime(k) and m > 0:
%o k = int(str(k)+str(m))
%o m -= 1
%o return n-m-1 if isprime(k) else -1
%o (PARI) a(n) = my(k=0, s=Str(n)); while (!isprime(eval(s)), k++; n--; if (k>=n, return(-1)); s = concat(s, Str(n-k))); return(k); \\ _Michel Marcus_, Mar 02 2022
%Y Cf. A052088, A052089, A054211, A341701, A341715, A341716, A341717.
%K sign,base
%O 0,26
%A _Chai Wah Wu_, Feb 23 2021