Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 04 2021 01:42:31
%S 2,4,6,16,16,12,10,24,16,18,16,36,32,48,16,24,64,24,32,48,24,128,16,
%T 16,96,36,64,32,96,60,144,64,32,64,12,48,48,20,16,24,16,144,128,56,96,
%U 192,96,128,32,48,64,96,80,16,72,32,192,64,96,192,32,48,48,64
%N a(n) is the number of divisors of prime(n)^7 - 1.
%C a(n) >= A309906(7) = 8 for n > 3.
%F a(n) = A000005(A000040(n)^7 - 1).
%e p = factorization
%e n prime(n) p^7 - 1 of p^7 - 1 a(n)
%e - -------- ---------- --------------------- ----
%e 1 2 127 127 2
%e 2 3 2186 2 * 1093 4
%e 3 5 78124 2^2 * 19531 6
%e 4 7 823542 2 * 3 * 29 * 4733 16
%e 5 11 19487170 2 * 5 * 43 * 45319 16
%e 6 13 62748516 2^2 * 3 * 5229043 12
%e 7 17 410338672 2^4 * 25646167 10
%e 8 19 893871738 2 * 3^2 * 701 * 70841 24
%e 9 23 3404825446 2 * 11 * 29 * 5336717 16
%t a[n_] := DivisorSigma[0, Prime[n]^7 - 1]; Array[a, 50] (* _Amiram Eldar_, Feb 27 2021 *)
%o (PARI) a(n) = numdiv(prime(n)^7-1); \\ _Michel Marcus_, Feb 27 2021
%Y Cf. A000005, A000040, A309906, A341669.
%K nonn
%O 1,1
%A _Jon E. Schoenfield_, Feb 26 2021