login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes p such that p^2 - 1 has fewer than 32 divisors.
3

%I #12 Mar 04 2021 01:43:25

%S 2,3,5,7,11,13,17,19,23,31,37,47,73

%N Primes p such that p^2 - 1 has fewer than 32 divisors.

%C For all primes p > 73, p^2 - 1 has at least A309906(2)=32 divisors.

%e p = factorization

%e n a(n) p^2 - 1 of p^2 - 1 tau(p^2 - 1)

%e -- ---- ------- -------------- ------------

%e 1 2 3 3 2

%e 2 3 8 2^3 4

%e 3 5 24 2^3 * 3 8

%e 4 7 48 2^4 * 3 10

%e 5 11 120 2^3 * 3 * 5 16

%e 6 13 168 2^3 * 3 * 7 16

%e 7 17 288 2^5 * 3^2 18

%e 8 19 360 2^3 * 3^2 * 5 24

%e 9 23 528 2^4 * 3 * 11 20

%e 10 31 960 2^6 * 3 * 5 28

%e 11 37 1368 2^3 * 3^2 * 19 24

%e 12 47 2208 2^5 * 3 * 23 24

%e 13 73 5328 2^4 * 3^2 * 37 30

%t Select[Range[100], PrimeQ[#] && DivisorSigma[0, #^2 - 1] < 32 &] (* _Amiram Eldar_, Feb 26 2021 *)

%Y Cf. A000005, A000040, A309906, A341655, A341658.

%K nonn,fini,full

%O 1,1

%A _Jon E. Schoenfield_, Feb 26 2021