login
A341659
Primes p such that p^3 - 1 has 8 divisors.
3
59, 167, 383, 839, 1487, 4259, 5087, 6047, 6599, 6719, 8543, 8963, 9743, 12227, 12647, 13163, 14087, 14867, 18947, 20123, 22643, 23099, 23159, 24083, 24239, 24659, 25583, 27107, 27299, 30203, 30803, 32507, 34319, 37463, 37799, 38603, 41879, 42839, 44519, 44687
OFFSET
1,1
COMMENTS
Intersection of A005385 (Safe primes p: (p-1)/2 is also prime) and A053182 (Primes p such that p^2 + p + 1 is prime).
For each term p, p^3 - 1 = (p-1)*(p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^2 + p + 1 = r.
Conjecture: sequence is infinite.
LINKS
EXAMPLE
p = factorization
n a(n) p^3 - 1 of (p^3 - 1)
- ---- ------------ -------------------
1 59 205378 2 * 29 * 3541
2 167 4657462 2 * 83 * 28057
3 383 56181886 2 * 191 * 147073
4 839 590589718 2 * 419 * 704761
5 1487 3288008302 2 * 743 * 2212657
6 4259 77254345978 2 * 2129 * 18143341
7 5087 131639193502 2 * 2543 * 25882657
8 6047 221115865822 2 * 3023 * 36572257
9 6599 287365339798 2 * 3299 * 43553401
MATHEMATICA
Select[Range[50000], PrimeQ[#] && DivisorSigma[0, #^3 - 1] == 8 &] (* Amiram Eldar, Feb 26 2021 *)
PROG
(PARI) isok(p) = isprime(p) && (numdiv(p^3-1) == 8); \\ Michel Marcus, Feb 26 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 26 2021
STATUS
approved