OFFSET
2,1
COMMENTS
a(1398) = 658; log(1398)*log(658) = 46.999999997186..., a result remarkably close to an integer (see A341577).
EXAMPLE
For n=2, the only integer k in the interval [2,n] is 2, so a(2) = 2.
For n=3, log(3)*log(2) = 0.76150..., which differs from the nearest integer (1) by 0.23849..., but log(3)*log(3) = 1.20694..., which differs from the nearest integer (again, 1) by only 0.20694..., which is less than 0.23849..., so a(3) = 3.
For n=12, we have
k P=log(12)*log(k) |P - round(P)|
-- ---------------- ----------------
2 1.72240603825... 0.27759396174...
3 2.72994898165... 0.27005101834...
4 3.44481207651... 0.44481207651...
5 3.99930297102... 0.00069702897... (minimum)
6 4.45235501990... 0.45235501990...
7 4.83540506927... 0.16459493072...
8 5.16721811476... 0.16721811476...
9 5.45989796330... 0.45989796330...
10 5.72170900928... 0.27829099071...
11 5.95854590887... 0.04145409112...
12 6.17476105816... 0.17476105816...
so a(12) = 5.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Feb 17 2021
STATUS
approved