login
A341604
Those primitive elements of A337386 that have exactly one primitive nondeficient divisor (A006039).
1
990, 1170, 4590, 7650, 8550, 19470, 23562, 23868, 26334, 27324, 27846, 31050, 31878, 34452, 35190, 39330, 40194, 44370, 47430, 49590, 53010, 56610, 60030, 62730, 63270, 64170, 65790, 70110, 71910, 73530, 76590, 80370, 80910, 81090, 84870, 90270, 90630, 93330, 93366, 100890, 102510, 104310, 108630, 111690, 117450
OFFSET
1,1
COMMENTS
Terms k of A337479 for which A337690(k) = 1.
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
isA337479(n) = (isA337386(n)&&(1==sumdiv(n, d, isA337386(d))));
isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
isA006039(n) = ((sigma(n)==(2*n))||isA071395(n));
A337690(n) = sumdiv(n, d, isA006039(d));
isA341604(n) = (isA337479(n)&&(1==A337690(n)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 20 2021
STATUS
approved