login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fourier coefficients of the modular form (1/t_{3A}) * F_{3A}^16.
2

%I #18 Jul 24 2023 09:23:51

%S 0,1,54,1269,16804,134406,628398,1311968,-1701864,-14345991,-16443324,

%T 25426764,11246580,16601078,505866816,-113853762,-1326884336,

%U 1507092642,-3873575034,100819028,2685180888,6885133920,-20849400,10111254408,-10371867912,-412371305,-58625773596

%N Fourier coefficients of the modular form (1/t_{3A}) * F_{3A}^16.

%H Masao Koike, <a href="/A004016/a004016.pdf">Modular forms on non-compact arithmetic triangle groups</a>, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. Sloane wrote 2005 on the first page but the internal evidence suggests 1997.] See page 30.

%F Convolution product of 1/A030197 and A008655^4. - _Georg Fischer_, Mar 30 2023

%o (Sage)

%o def a(n):

%o if n==0: return 0

%o eta = x^(1/24)*product([(1 - x^k) for k in range(1, n)])

%o t3A = ((eta/eta(x=x^3))^12 + 27)^2/(eta/eta(x=x^3))^12

%o F3A = sum([rising_factorial(1/6, k)*rising_factorial(1/3, k)/

%o (rising_factorial(1,k)^2)*(108/t3A)^k for k in range(n)])

%o f = F3A^16/t3A

%o return f.taylor(x,0,n).coefficients()[n-1][0] # _Robin Visser_, Jul 23 2023

%Y Cf. A004016, A008655, A030197, A136747, A341306, A341556, A341557, A341558.

%K sign

%O 0,3

%A _Robert C. Lyons_, Feb 14 2021

%E More terms from _Georg Fischer_, Mar 30 2023