login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(n*sigma(A003961(n)), sigma(n)*A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors of n.
13

%I #15 Mar 29 2021 15:04:46

%S 1,1,2,1,2,36,4,5,1,2,2,36,2,24,120,1,2,9,4,2,8,4,6,180,1,18,4,168,2,

%T 360,2,7,12,2,336,117,2,12,4,10,2,288,4,364,30,24,6,36,19,3,360,18,6,

%U 72,56,120,16,2,2,360,2,16,4,1,12,144,4,2,60,336,2,45,2,6,10,12,264,72,4,2,11,2,6,2016,4,12,24

%N a(n) = gcd(n*sigma(A003961(n)), sigma(n)*A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors of n.

%H Antti Karttunen, <a href="/A341530/b341530.txt">Table of n, a(n) for n = 1..8191</a>

%H Antti Karttunen, <a href="/A341530/a341530.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = gcd(A341528(n), A341529(n)) = gcd(n*A003973(n), A000203(n)*A003961(n)).

%F a(n) = gcd(A341512(n), A341528(n)) = gcd(A341512(n), A341529(n)) = A342670(A003961(n)). - _Antti Karttunen_, Mar 24 2021

%o (PARI)

%o A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961

%o A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };

%Y Cf. A000203, A003961, A003973, A028982 (positions of odd terms), A341512, A341526, A341527, A341528, A341529, A342670.

%Y Cf. A342674 (same sequence applied onto prime shift array A246278).

%K nonn

%O 1,3

%A _Antti Karttunen_, Feb 16 2021