login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.
11

%I #15 Feb 17 2021 20:28:43

%S 1,8,9,52,20,4,21,64,279,160,77,26,117,28,6,1936,170,248,114,1040,189,

%T 308,115,32,1425,104,1053,26,464,16,589,1664,231,1360,10,124,777,304,

%U 1053,1280,902,42,516,22,372,230,423,968,343,3800,17,676,530,468,110,224,513,3712,1829,104,2074,589,5859,69952,780,154

%N Numerator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

%C Like the ratios sigma(n)/n, A003973(n)/A003961(n) and A003961(n)/n, also the ratio r(n) = A341528(n)/A341529(n) is multiplicative: if gcd(x,y) = 1, r(x*y) = r(x)*r(y).

%H Antti Karttunen, <a href="/A341526/b341526.txt">Table of n, a(n) for n = 1..8191</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A341528(n) / A341530(n) = A341528(n) / gcd(A341528(n), A341529(n)).

%F For all n > 1, a(n) < A341527(n).

%t f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Numerator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* _Amiram Eldar_, Feb 17 2021 *)

%o (PARI)

%o A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961

%o A341526(n) = { my(s=A003961(n)); numerator((sigma(s)*n)/(sigma(n)*s)); };

%Y Cf. A000203, A003961, A003973, A017665, A017666, A336849, A341525, A341528, A341529, A341530.

%Y Cf. A341527 (denominators).

%Y Cf. A341626 (same sequence as applied onto prime shift array A246278).

%K nonn,frac

%O 1,2

%A _Antti Karttunen_, Feb 16 2021