login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341500
Number of cycles in the 2 X n rook graph.
3
0, 1, 14, 170, 2904, 74779, 2751790, 137080628, 8882440224, 726325289493, 73173672616318, 8906815805139614, 1288823180820993752, 218690604655001166063, 43009037666992387906942, 9705063652363696926178792, 2490696756572714604529691648, 721374035463654709543727643561
OFFSET
1,3
LINKS
FORMULA
a(n) = (Sum_{k=3..n} binomial(n,k)*(k-1)!) + (1/2)*Sum_{k=1..floor(n/2)} (k*binomial(n,2*k) * binomial(2*k,k) * (Sum_{j=0..n-2*k} binomial(n-2*k,j)*(k+j-1)!)^2).
PROG
(PARI) a(n)={sum(k=3, n, binomial(n, k)*(k-1)!) + sum(k=1, n\2, k*binomial(n, 2*k) * binomial(2*k, k) * sum(j=0, n-2*k, binomial(n-2*k, j)*(k+j-1)!)^2)/2}
CROSSREFS
Column 2 of A286418.
Sequence in context: A200164 A199529 A098299 * A254811 A099158 A014882
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Feb 21 2021
STATUS
approved