Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 10 2023 12:53:40
%S 0,0,1,0,3,2,0,4,1,0,6,8,2,0,4,4,11,14,9,16,7,8,5,20,8,10,1,0,28,20,
%T 28,4,25,4,14,32,28,26,4,36,28,20,28,12,28,2,28,20,0,0,19,48,28,32,34,
%U 28,43,24,28,56,28,16,28,4,18,20,28,52,25,0,28,68,28,66,19,40
%N a(n) = (Sum_{k=1..7} k^n) mod n.
%H Robert Israel, <a href="/A341413/b341413.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A001554(n) mod n.
%F a(A056750(n)) = 0.
%F From _Robert Israel_, Feb 09 2023: (Start)
%F Given positive integer k, let m = A001554(k).
%F If p is a prime > m/k and A001554(p*k) == m (mod k), then a(p*k) = m.
%F This is true for all primes p > m/k for k = 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, ...
%F For k = 5 or 15 it is true for primes p > m/k with p == 1 (mod 4).
%F For k = 11 it is true for primes p > m/k with p == 1 or 7 (mod 10).
%F For k = 13 it is true for primes p > m/k with p == 1 (mod 12).
%F (End)
%p a:= n-> add(i&^n, i=1..7) mod n:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Feb 11 2021
%t a[n_] := Mod[Sum[k^n, {k, 1, 7}], n]; Array[a, 100] (* _Amiram Eldar_, Feb 11 2021 *)
%o (PARI) a(n) = sum(k=1, 7, k^n)%n;
%Y (Sum_{k=1..m} k^n) mod n: A096196 (m=2), A341409 (m=3), A341410 (m=4), A341411 (m=5), A341412 (m=6), this sequence (m=7).
%Y Cf. A001554, A056750.
%K nonn
%O 1,5
%A _Seiichi Manyama_, Feb 11 2021