login
A341326
Primes p such that p+j, p+k, q+j, q+k are all prime, where q is the next prime after p, j = p mod A007953(q) and k = q mod A007953(p).
1
28643, 36749, 77687, 207497, 375091, 507137, 510061, 597419, 652543, 810343, 869413, 910201, 967397, 1021283, 1219831, 1246879, 1653101, 1673741, 1830331, 1944311, 2386271, 2415449, 2604731, 3135023, 3288529, 3622721, 3714031, 4227031, 4812413, 6208591, 7250197, 7308241, 7337683, 7447061, 7451981, 7513577
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 77687 is a term because with p = 77687, q = 77689, k = p mod 37 = 24, j = q mod 35 = 24, and p+j = p+k = 77711 and q+j = q+k = 77713 are prime.
MAPLE
filter:= proc(p, q) local k, j;
k:= p mod convert(convert(q, base, 10), `+`);
j:= q mod convert(convert(p, base, 10), `+`);
andmap(isprime, {p+k, q+k, p+j, q+j});
end proc:
q:= 2:
count:= 0: R:= NULL:
while q < 10^7 do
p:= q; q:= nextprime(q);
if filter(p, q) then count:= count+1; R:= R, p; fi
od:
CROSSREFS
Cf. A007953.
Sequence in context: A234828 A263116 A252908 * A179251 A122650 A172755
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Feb 09 2021
STATUS
approved