login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lower triangular table of products in the semigroup S = {(0,0), (i,j): i >= j >= 1} (see Comments for precise definition), read by rows.
4

%I #21 Feb 26 2022 10:45:38

%S 0,0,1,0,2,7,0,3,8,10,0,4,16,17,37,0,5,17,19,38,40,0,6,18,21,39,42,45,

%T 0,7,29,30,67,68,69,121,0,8,30,32,68,70,72,122,124,0,9,31,34,69,72,75,

%U 123,126,129,0,10,32,36,70,74,78,124,128,132,136,0,11,46,47,106,107,108,191,192,193,194,301

%N Lower triangular table of products in the semigroup S = {(0,0), (i,j): i >= j >= 1} (see Comments for precise definition), read by rows.

%C Consider the semigroup S consisting of the pairs (0,0) and {(i,j): i >= j >= 1}, with componentwise products. Label the elements 0 = (0,0), 1 = (1,1), 2 = (2,1), 3 = (2,2), 4 = (3,1), 5 = (3,2), 6 = (3,3), 7 = (4,1), ... The triangle gives T(n,k) = label of product of n-th and k-th elements, for n>=k>=0.

%C See A341317 for further information, including a Maple program.

%H Alois P. Heinz, <a href="/A341318/b341318.txt">Rows n = 0..200, flattened</a>

%e Triangle begins:

%e 0, [0]

%e 1, [0, 1]

%e 2, [0, 2, 7]

%e 3, [0, 3, 8, 10]

%e 4, [0, 4, 16, 17, 37]

%e 5, [0, 5, 17, 19, 38, 40]

%e 6, [0, 6, 18, 21, 39, 42, 45]

%e 7, [0, 7, 29, 30, 67, 68, 69, 121]

%e 8, [0, 8, 30, 32, 68, 70, 72, 122, 124]

%e 9, [0, 9, 31, 34, 69, 72, 75, 123, 126, 129]

%e 10, [0, 10, 32, 36, 70, 74, 78, 124, 128, 132, 136]

%e ...

%p t:= n-> n*(n-1)/2:

%p f:= n-> ceil((sqrt(1+8*n)-1)/2):

%p g:= n-> (x-> [x, n-t(x)][])(f(n)):

%p T:= (n, k)-> (h-> t(h[1]*h[3])+h[2]*h[4])(map(g, [n, k])):

%p seq(seq(T(n, k), k=0..n), n=0..12); # _Alois P. Heinz_, Feb 17 2021

%t t[n_] := n*(n - 1)/2;

%t f[n_] := Ceiling[(Sqrt[1 + 8*n] - 1)/2];

%t g[n_] := Function[x, {x, n - t[x]}][f[n]];

%t T[n_, k_] := (Function[h, t[h[[1]]*h[[3]]] + h[[2]]*h[[4]]])[Flatten @ Map[g, {n, k}]];

%t Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Feb 26 2022, after _Alois P. Heinz_ *)

%Y Cf. A341317, A341706.

%Y Main diagonal gives A341736.

%K nonn,tabl

%O 0,5

%A _N. J. A. Sloane_, Feb 17 2021