login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (a(n-1) + a(n-3))/2^m, where 2^m is the highest power of 2 that divides both a(n-1) and a(n-3), with a(0) = a(1) = a(2) = 1.
3

%I #13 Feb 17 2021 20:25:04

%S 1,1,1,2,3,4,3,6,5,8,7,12,5,12,6,11,23,29,40,63,92,33,96,47,80,11,58,

%T 69,80,69,138,109,178,158,267,445,603,870,1315,1918,1394,2709,4627,

%U 6021,8730,13357,19378,14054,27411,46789,60843,88254,135043,195886,142070,277113,472999

%N a(n) = (a(n-1) + a(n-3))/2^m, where 2^m is the highest power of 2 that divides both a(n-1) and a(n-3), with a(0) = a(1) = a(2) = 1.

%C A sequence intermediate between Narayana's A000930 and Reed Kelly's A214551.

%C It will be interesting to compare the growth rates of A000930 (well-understood), A241551 (a mystery), the present sequence, and A341312.

%C It appears that the equation log(a(n)) = 0.265986*n + 1.56445 is a good fit to the data (see the figures). - _Hugo Pfoertner_, Feb 17 2021

%H Hugo Pfoertner, <a href="/A341313/b341313.txt">Table of n, a(n) for n = 0..5000</a>

%H Hugo Pfoertner, <a href="/A341312/a341312.pdf">Comparison of linear fits to logarithm of A341312, A341313, A214551 (Reed Kelly), and A000930 (Narayana's cows)</a>.

%H Hugo Pfoertner, <a href="/A341313/a341313.pdf">Deviation of log(A341313) from linear fit in range 3...10000</a>.

%p RK3:=proc(n) local t1,t2; option remember;

%p if n <= 2 then 1 else t1:=RK3(n-3)+RK3(n-1);

%p t2 := min( padic[ordp](RK3(n-3), 2), padic[ordp](RK3(n-1), 2) );

%p t1/2^t2;

%p fi;

%p end;

%p [seq(RK3(n),n=0..60)];

%o (PARI) a341313(nterms)={my(a=vector(nterms));a[1]=a[2]=1;a[3]=2;for(n=4,nterms,a[n]=(a[n-1]+a[n-3])/2^min(valuation(a[n-1],2),valuation(a[n-3],2)));concat([1],a)};

%o a341313(60) \\ _Hugo Pfoertner_, Feb 16 2021

%Y Cf. A000930, A214551, A341312.

%K nonn

%O 0,4

%A _N. J. A. Sloane_, Feb 16 2021